Project Report
Catch me if you can

https://mobut-project.web.app/
DM2518 Mobile Development with Web Technologies

Oscar Rosquist, Alessandro Iop, Hannes Runelov, Ramtin Erfani

May 2020

Contents

[1__Introductionl
[2_Project overview|

N

|

3.3 PubNublo

A React.gs| . . . o e e e e

3.5 Google Maps| e e

s 0w ow W

4 Implementation|

4.2 Lobby component and view| Lo oo

.3 Game component and view] L

4.4 Synchronisation of User data]. o v v v v v it

4.5 Firestore Component|. Lo

ENEES [R= Y, BN

[f_Further development]
[Point system and leaderboard at the end of the gamd.
b.2 Circular target assignment|. L Lo
p.3 Chat in the lobby|.
5.4 Better looking UI|. oo
B5 RKuown bugs|.

[6_Use cases 9
[6.1 Alice, Bob and Carl wants to play tag with each other| 9
[6.2 Donald wants to play & game of tag] . . . « v . . v v e 10

[T _Resources 10

© 0o o co co @

https://mobut-project.web.app/

1 Introduction

In these times of confinement and quarantine due to the spread of COVID-19, many opportunities
for meeting with friends and have a fun time together have gone amiss. Especially during the
longer, sunny days of spring, a time of the year when enjoying the outdoors seems the best activity,
sacrificing such a relevant habit of our social-being is very difficult, and we all hope to get back to a
normal life as soon as possible. With that in mind, for this project we wanted to develop something
aimed at the future, even if not the most immediate one: giving people an opportunity to strengthen
their bonds of friendship while spending time outdoors and exercising by walking long distances was
our personal goal in the past weeks. In addition to that, our aim was to bring a classic game to
a more challenging and exiting level, by relying on people’s more competitive side; that is why we
developed a scaled-up version of the popular game of Tag, extending it to (potentially) the size of
an entire city.

In our game, after signing in, players start off by joining a lobby, from which they are redirected
to the main view after a minimum amount of players has been reached and a countdown has expired.
The main view of the game consists of a geographical map displaying an arrow placed on the player’s
current position and centered on it; the arrow points to the position of the opponent that the player
got assigned as a target. Moving around in the surrounding geographical area, and eventually
“tagging” the target when it is close enough, eliminates the opponent from the game and triggers
the re-shuffle of all the players remaining. The last player standing wins the game.

2 Project overview

Provided that one of our aims was to use as many technologies presented during the lab sessions
as possible, we came up with several features that would implement the mechanics of our game, as
listed here below, and proposed them in the initial project specification:

e A lobby where players could see each other and join or exit from freely;
e Active GPS tracking to get each player’s position during the game;

e An arrow placed a the map, pointing to the target player, with different colors according the
distance;

e Real time sharing of position data between players using Firestore, which we however ended
up implementing though PubNub instead, as we deemed it to fit better for this purpose;

e A tag button that appears when the player is close enough to the target;

e A visual indication of how close the person hunting the player is, a feature that was ultimately
left out due to time constraints and more urgent debugging duties to be done;

e Random reassignment of the target once a player gets eliminated, which resulted in a complete
re-shuffle of the players left in the game, instead of just a single player’s re-assignment;

e Display final scores and/or leaderboards at the end of the game, ultimately left out for the
same time reasons explained above.

Another change of the original specification made during the development process were the addition
of a login mechanism through Google authentication, a simpler but more effective solution to user’s
temporary profiling compared to a custom authentication.

2.1 Time frame

We began planning and working on this project on April 7, 2020 and presented it on May 14.
During that month, we had multiple meetings together as a group, before starting the development
phase individually, splitting the main components of the project amongst ourselves. After the
first components were built, we assembled the skeleton of the application and tested it (the map
component came in a bit later). From there on, we started always working in groups of two, three or
four people with increasing frequency. From meeting on Discord a couple of times a week, we ended
up gathering almost every day towards the end of the project, especially when bugs and obstacles
started arising.

The initial scope of the project may have been a bit ambitious as it included more than what
we had the time to develop. Most of the features described in the original project specification were
however included in the final result. As mentioned before, our initial timeline from the original
project specification were followed somewhat accurately. The parts that took longer time than
initially expected were implementing the game mechanics and a synchronised game play between
users. The User Interface was another part we did not expect to take as long as it did, due to
what we thought was a lack of documentation of Onsen UI for React components. Appearance and
aesthetics of the UI were however worked on according to the timeline and then postponed until the
more important bugs were fixed.

3 Technical overview

3.1 Firebase

We decided to use Firebase [2] to store user data as well as handle Authentication of users. The
reason we chose to use Firebase was mainly how quick its setup is, as well as how easy it is to use.
Thanks to the Firebase SDK, we were able to handle login through Google authentication. The API
provided by the SDK came out to be easy to use and quick to integrate with. For storing data we
employed a Firestore database to collect users’ email addresses, names, their Google profile pictures
and unique IDs, all in a JSON format. These attributes were all fetched from each player’s Google
profile when logging in. Additionally, Firebase was also used for hosting the application, which was
deployed to Firebase Hosting through its CLIL.

3.2 Omnsen Ul

We employed Onsen UI [5] to build the user interface of our mobile web app. Onsen UI provides
support to multiple web frameworks as well as vanilla Javascript. We decided to use its React.js
components for this projects since it was our chosen framework, and we had perceived it as easy to
employ from experimenting with it during the lab sessions. We had, however, previously used just
its vanilla Javascript components, and noticed, hile working on the project, that the documentation
for React.js was not thorough/complete.

3.3 PubNub

The idea of introducing PubNub [6] as a technology for relaying every player’s position in real
time during the game came after realising that updating a user’s position attribute in the Firestore
documents would take too much time, as fetching it from another client would. In addition, using
this technology was one more opportunity to apply the knowledge gained during the lab sessions of

the course. If we did not relay all players’ positions as quickly as possible to each other, we would
certainly end up having synchronization problems, especially when they’re close to each other or
they’re moving fast.

3.4 React.js

Since two of the group members were already familiar with the React.js framework [7], and choosing
another one would have meant that everyone had to learn it from scratch (a potential cause of
disorientation for the whole group), we agreed to use React as main infrastructure for our project.
Nevertheless, all group members experienced difficulties in managing props propagation and state
update in React, for example when passing player information from the database management
script to the main game component. The reason we ended up spending a relevant amount of time on
implementing a working data flow is that some services we used (e.g. Firestore and Google Maps)
returned promises that have to be resolved before updating each component’s inner state and then
displaying the correct content in the UIL. Only by properly synchronising all components we were
able to make the game mechanics work as intended, but many obstacles arose in the attempt.

It ended up being fairly easy to adopt for a mobile web app, all the while keeping his power
that would perhaps have gone missing if we decided to use React Native. Considering that we were
developing a web app, the only real concern during the design phase was making it responsive to
all possible platforms. On the other side, it is still accessible from a desktop environment, and this
flexibility adds value to it.

3.5 Google Maps

Considering that the game is entirely based on the use of a geographical map, the Google Maps
APT [] that we learned during the first lab session was an obvious choice for implementing its main
view, where the map is displayed full-screen and is augmented with information about each player’s
own and target positions. An entire branch of the project was therefore dedicated to adding it
to a React component that also combined GPS tracking and computation of the relative distance
between players. The API provided a solid starting point for the later implementation of the game
mechanics as well as for the update of the app Ul as the game progresses.

4 Implementation

4.1 Authentication

In order to implement authentication in our project we used the Firebase authentication API. The
Firebase SDK provides an authentication function that enabled us to authenticate a user through
Google OAuth, which is an authentication handled on by Google servers. When a user is successfully
authenticated we will receive a token with an expiration date. The token is then set to invalid if
the user decides to sign-out or if the expiration date cease. In order to keep track of the user sign-
in/sign-out state we used a observer-function. The observer-function verifies that a user is signed-in
if the user data is retrievable from Firebase [I] [3].

The application also utilises the single sign-on functionality that is supported by the Firebase
SDK. This is used to keep the user signed in until they manually click the log out button or clear
their browser data. This will prevent the users from having to always log in. Since we are expecting
them to play on their phone, it would be the same user most of the time. This continuity of their
session should therefore be very useful. Even if the users accidentally close the web application,

their current state in the lobby will be persisted. The view of the app before signing in is shown in
Figure [I]

CATCH
IF YOU CAN

Sign in to play!

Figure 1: Homepage of the web app before a user signs in.

4.2 Lobby component and view

Once the user has logged in, and only then, will they see the the lobby (Figure. The lobby consists
of the Onsen UI Toolbar component which displays a Google profile picture and the name of the
logged in user as well as a button to logout. Below the toolbar the user will see a list of players that
are currently in the lobby as well as a floating action button to press that will add the user to the
lobby. The lobby component will be listening to any changes made to a collection called lobby in
the Firestore database. The lobby collection contains the players that are in the lobby as separate
documents. By having the lobby component listen to any changes made to that collection, it will
trigger a function in the app that makes the component render again if the players in the lobby
change. Since the Firebase SDK provides this listening API, we do not have to continuously poll the
database for changes and can instead let the database notify the clients when changes occur. When
there are 2 or more players in the lobby, a countdown will start and be displayed at the top of the
screen as a Onsen Ul toast, showing the time left until the game starts, and it is reset whenever a
new players joins in.

Hannes Sign out

Sven

Hannes

Figure 2: Ul of the game lobby, presented after the user signs in.

The countdown functionality was not as easy to implement as we first believed. Since the
countdown triggers the move of players from the lobby collection to the game collection described
in section the clients that had not yet been moved would still act on any changes in the lobby
collection as described above. This would occasionally cause non-desirable behavior such as players
not getting redirected to the game because there were now to few players in the lobby because almost
all of them had been redirected.

4.3 Game component and view

The game component will be shown to the users in the lobby once the countdown reaches zero. It
comprises of a full-screen Google Maps view. At the start of the game the players that were in the
lobby collection will be moved to a collection in Firestore called game.

This move of players proved to be more challenging then we first thought. We have each client
move themselves from the lobby collection to the game collection. Since all clients listen to changes
in the collections, as described in section [1.2] they will act on each of the players moving themselves
between the collections. As an example, any event that triggers on changes in the lobby collection
therefore needs to know if it’s the game starting or simply a player moving in and out of the lobby.

Immediately after starting the game, the user will see a loading screen built from the Onsen UI
modal component. This loading screen will be showed while the Google Geolocation API fetches the
users position and until the user have had their target players location assigned through PubNub.
Once this data has been loaded, the map will be centered on the users location where an arrow will
be placed. This arrow will change its color depending on how close the user is to the target player.
The closer the distance, the warmer the hue will be. Displaying the arrow at the center of the map
and making it point in the direction of the target required a more customized solution compared to
the standard implementation of marker object with the Google Maps API. Instead of using a regular
svg image as the marker’s icon, we resorted to defining it as a specific path string so that we could
later on update its orientation whenever either the player’s, the target’s or both positions changed.

Once the user and its target is within a distance of 10 meters of each other, the arrow will be
replaced by a tag button, allowing the player to tag the other. Once a player is tagged, they are
displayed with an Onsen UI toast message telling them that they lost and then they are redirected

to the lobby view. If there are multiple players left in the game, everybody gets assigned a new
random target to chase. The consequence of this is that one player can be hunted by multiple players,
but such mechanism keeps the game interesting and unpredictable. If there is only one player left,
however, that player will see an Onsen UI toast message saying that they won. Throughout the
game, the clients will broadcast their locations to each other using PubNub whenever they change
(i.e. when the players move), thus keeping the player target location of each player up to date.

The three stages of the game — i.e. loading, chasing and tagging — are all presented in Figure
as mobile screenshots.

Map data ©2020 Googe | Trna ofUsa

Figure 3: From left to right: loading screen displayed before the game starts; main map view, where
a white arrow placed on the player’s current position indicates that the target is far away; main map
view, where a red tag button replacing the arrow indicates that the target is within ten meters of
the player.

4.4 Synchronisation of user data

In order to keep track of the user’s coordinates we used the Google Geolocation API. This API
provides a function that listens on user position updates. Whenever the user position would change
the updated location was broadcast through PubNub to all clients. This implementation enabled
us to synchronize users in the game. Since we wanted to implement the game so that a user only
could access the position of the player that they were chasing, we needed to filter the data that was
broadcast. We Implemented a filter method that ignores data that are received from players other
than the one being chased.

4.5 Firestore Component

To handle the communication between the clients and the database, we developed a Firestore com-
ponent to handle it. It will perform all communication that the clients need. Some examples are:

1. add player to the lobby/game collection;

2. remove player from the lobby/game collection;

3. listen to changes in the lobby/game collection.

The Firestore database uses a JSON-like structure when saving data to it. The entries in the
lobby and game collections, also known as documents, contain the users’ email addresses, their
Google profile picture, their Google user ID as player ID as well as their Google profile name as the
player name. We also added a flag that indicates if a player is ready or not, which later on became
unused. The JSON structure can be seen in Figure [This structure made it very easy to work
with the data in JavaScript as objects.

email: "user@email.com’

imgURL : "https:/furl.to.profile.pic.com/photo.jpg"
playerId: "uoWz7cogwnfi8JTFROj43njk539Gthy"
playerName: "Sven'

ready: false
Figure 4: The structure of the Elements in the lobby and the game collections

5 Further development

5.1 Point system and leaderboard at the end of the game

Whenever a game ends and a player wins a toast is shown with a congratulation message. In order
to make the app more interactive we thought that it would be interesting to have a component
that displays user statistics and high-scores. In order to implement this we store user statistics in a
Firebase collection.

5.2 Circular target assignment

The application currently assigns targets randomly. It would therefore be interesting to implement
different targets strategies in order to see which one that is best suited for our application. One
target strategy that we discussed but never implemented is to target players in a circular manner.
In a hypothetical circular target strategy the idea is that person-1 chases person-2, person-2 chases
person-3 and person-3 chases person-1. When a player eliminates their target from the game, they
get the tagged player’s target as a new player to chase.

5.3 Chat in the lobby

In order to make the application experience more social, we thought that it would be interesting to
create a chat in the lobby. With a chat, users would be able to communicate with each other while
they are waiting for other players to join. A possible way to implement a chat is to use PubNub.

5.4 Better looking Ul

From the start of the project we wanted a good looking User Interface. We started out with a
simple User Interface and then focused on the desired features and game mechanics. Because of

the time limit and unforeseen issues while developing the functionality of the application, before the
project presentation the User Interface was left behind a bit more than we had hoped for. After
realizing that having a better looking UI would not only be aesthetically pleasing, but also improve
the overall user experience, we decided to continue working on it after the presentation. Starting
off with the homepage, the toolbar we had used before was not really needed, so we removed it and
let the screen consist of a logo and the sign-in button. We also changed the color scheme to a dark
theme with red details, and embedded a custom typeface (called “Jost”) from Google Fonts. Moving
on to the lobby screen, the color scheme was mostly carried over from the home screen with some
minor adjustments out of necessity. We had to rearrange some elements though, as well as increase
the font size and player icon size. We also added a circular background to each icon to make them
appear more consistent.

Finally, we were also planning on styling the map. Although it looks adequate as it is, we wanted
to implement a dark-style theme for the its view, in order to better fit with the overall theme of
the web app and to make the compass arrow stand out even more. Furthermore, the arrow itself
could use some better styling — with dark colors for the map, the arrow doesn’t need a black contour
to stand out. After implementing all the aforementioned other possible improvements, then, new
elements of the interface would probably need additional styling as well.

5.5 Known bugs

As of now, the database has one lobby collection and one game collection. When a game starts,
players are moved from the lobby to the game. This is a problem because the game does not handle
multiple games at the same time. Players can join the lobby and be redirected to the game even
thought the game has already started. A possible solution for this problem would be to enable users
to create their own custom lobbies with unique collection names and once a game starts the lobby
will be deleted from the database which will disable players to join the lobby at a later point in time.

6 Use cases

Here below two different use cases are presented as potential scenarios that cover all the features of
our game. It can be used both by groups of players that already know each other, or by single users
with the aim of making new friends.

6.1 Alice, Bob and Carl wants to play tag with each other

The corona epidemic is over. Alice, Bob and Carl are finally allowed to go outside. They all feel like
they need to compensate for all the lonely hours that they spent at home. Since the three friends
live far from each other, they decide to play a game of tag through the web application called “Catch
Me if You Can”.

After signing in, they all join the game lobby and 30 seconds later they are redirected to the
game map. The only thing that is visible in the map view is a player marker that represent who
they are chasing and an arrow that represents themselves. They can not see the name of the person
that they are chasing. Alice and Carl are randomly assigned Bob as a target, while Bob is randomly
assigned Alice. As they get closer to each other, the shade of their respective arrows transitions from
white to an increasingly warmer color (e.g. yellow, orange, red). When Alice finds Bob, within a 10
meter radius, her arrow turns into a tag button. She immediately tags him and Bob is unfortunately
eliminated and redirected back to the lobby. As Alice is distracted, celebrating her success, Carl
suddenly pops up from nowhere and smashes the tag button like if it was life or death.

Carl wins the game! After remaining the only player standing, he is automatically redirected
back to the lobby.

6.2 Donald wants to play a game of tag

Donald is new in town and has no friends. But Donald has a gift, he is particularly good at chasing
people, hiding in bushes, and running fast. He stumbles across the application called “Catch Me if
You Can” and realises that it is a perfect way for him to meet new friends. Donald signs in to the
app with his new Google mail account and joins the game lobby. After 30 seconds he and several
other players, from the lobby are redirected to the map view. In the map view Donald sees an arrow
that is representing his current position and a marker that is representing the location of the player
that he is hunting. Donald’s instincts activate and he starts hunting. As Donald gets closer his
arrow starts to change color. Its hue transitions from white to yellow, orange and finally red.

Finally, Donald’s arrow is replaced by a tag button. Donald knows what that means; the target
is close at hand. Skillfully, he hides in the closest bush, waiting for his prey to fall in his trap. But
little does he know that his target is also chasing him. Donald gets tagged and therefore eliminated
from the game; at first he is sad, but the other player comforts him and they become best friends.
After all, Donald cannot complain.

7 Resources

You can find the code of our project in our GitHub repository:
https://gits-15.sys.kth.se/hrunelov/mobut-project

The game is deployed on the following website:
https://mobut-project.web.app/

References

[1] Firebase Authentication. https://firebase.google.com/docs/auth. Accessed: 2020-05-21.

[2] Firebese documentation for software developers. https://firebase.google.com/docs. Ac-
cessed: 2020-05-21.

[3] Google Authentication for software developers. https://developers.google.com/identity/
protocols/oauth2/service-account. Accessed: 2020-05-21.

[4] Google Maps documentation for software developers. https://developers.google.com/maps/
documentation. Accessed: 2020-05-21.

[6] Onsen UI 2 homepage. https://onsen.io/. Accessed: 2020-05-21.

[6] PubNub documentation for software developers. https://www.pubnub.com/docs. Accessed:
2020-05-21.

[7] React.js homepage. https://reactjs.org/. Accessed: 2020-05-21.

10

https://gits-15.sys.kth.se/hrunelov/mobut-project
https://mobut-project.web.app/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs
https://developers.google.com/identity/protocols/oauth2/service-account
https://developers.google.com/identity/protocols/oauth2/service-account
https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://onsen.io/
https://www.pubnub.com/docs
https://reactjs.org/

	Introduction
	Project overview
	Time frame

	Technical overview
	Firebase
	Onsen UI
	PubNub
	React.js
	Google Maps

	Implementation
	Authentication
	Lobby component and view
	Game component and view
	Synchronisation of user data
	Firestore Component

	Further development
	Point system and leaderboard at the end of the game
	Circular target assignment
	Chat in the lobby
	Better looking UI
	Known bugs

	Use cases
	Alice, Bob and Carl wants to play tag with each other
	Donald wants to play a game of tag

	Resources

